ناتج جمع الكسرين في أبسط صورة
ناتج جمع كسرين في أبسط صورة هو عملية رياضية أساسية. تهدف هذه العملية إلى إيجاد الكسر الذي يمثل مجموع كسرين، مع التأكد من أن الكسر الناتج مكتوب بأبسط صورة ممكنة. هذا يعني أن البسط والمقام لا يشتركان في أي عوامل مشتركة بخلاف الواحد.
خطوات جمع الكسرين في أبسط صورة:
-
توحيد المقامات: إذا كان للكسرين مقامات مختلفة، يجب أولاً توحيد المقامات. يتم ذلك بإيجاد المضاعف المشترك الأصغر (LCM) للمقامات. ثم يتم تحويل كل كسر بحيث يكون مقامه مساوياً للمضاعف المشترك الأصغر.
-
جمع البسط: بعد توحيد المقامات، يتم جمع البسط (الأعداد الموجودة في الأعلى) مع الاحتفاظ بالمقام نفسه.
-
تبسيط الكسر الناتج: بعد جمع البسط، قد يكون الكسر الناتج غير مبسط. في هذه الحالة، يجب تبسيط الكسر عن طريق قسمة البسط والمقام على أكبر قاسم مشترك بينهما. هذا يضمن أن الكسر مكتوب بأبسط صورة ممكنة.
مثال:
لنفترض أننا نريد جمع الكسرين 1/2 و 1/4.
-
توحيد المقامات: المضاعف المشترك الأصغر للعددين 2 و 4 هو 4. لذلك، نحول الكسر 1/2 إلى 2/4.
-
جمع البسط: الآن لدينا الكسرين 2/4 و 1/4. نجمع البسط: 2 + 1 = 3. الكسر الناتج هو 3/4.
-
تبسيط الكسر الناتج: الكسر 3/4 مبسط بالفعل، حيث لا يوجد قاسم مشترك بين 3 و 4 بخلاف 1. لذلك، ناتج جمع الكسرين 1/2 و 1/4 هو 3/4.
References
- ناتج جمع كسرين في أبسط صورة. https://www.youtube.com/watch?v=wJ-J9-w-wJg (youtube.com)

اترك تعليقاً